Navigating through the quagmire of COVID-19 diagnostic testing

An overview of assay methods and result interpretation of COVID-19 diagnostic testing

Disclosures

- Roche Diagnostics, transplant viral testing advisory panel
- NIH RADx-UP, program member
- IDSA COVID-19 Diagnostic Guideline, panel member
Objectives

- Assess antigen, antibody, and molecular test options, and select the appropriate test
- Discuss the risks and benefits associated with PCR and isothermal molecular testing
- Explain the limitations of using Ct values and estimating viral load for clinical guidance

Types of common methods used for the detection of SARS-CoV-2

- Molecular: detects the presence of viral RNA, indicating active infection
- Antibody: detects presence of antibodies raised against the virus, indicating active or past infection
- Antigen: detects presence of viral proteins, indicating active infection

Note: none of the tests are FDA approved or cleared. Marketed tests are granted Emergency Use Authorization (EUA) status - essentially no clinical data on submission
Detection and Course of Infection

Antibody Detection

- Compared to PCR (positive and negative)
- IgM sensitivity at week 5, 75-80%
- IgA insufficient data, and specify issues (false positive)
- IgG maintains close to 95% sensitivity after week 3

Hanson et al., IDSA COVID-19 Diagnostic Guidelines Serology, 2020
Antigen Detection

- Commercially available antigen test performance:
 - Sensitivity is not good, 84-97% sensitive compared to PCR (some reporting < 50%), thus false negative is a concern
 - Specificity is very good, ≥99%, thus false positive results unlikely

- Detection window is very narrow to about 1 week after onset of symptoms (unclear in asymptomatic individuals)
 - > 1 week (5-7 days), can be below limit of detection

- Currently, negative antigen test results should be confirmed with a PCR test

- FDA has been actively pulling badly performing antigen (and antibody) tests off the market

Molecular Detection

- NAAT (nucleic acid amplification test), most common and the current "gold standard"
 - Technical note: RNA needs to be made into DNA (complementary DNA, cDNA), Reverse Transcription (RT)
 - NAAT comes in two flavors:
 - RT-qPCR (i.e. Roche, Cepheid), commonly referred to as just "PCR"
 - RT-isothermal (i.e. ID Now), commonly referred to as "LAMP" or "isothermal"

- ddPCR: droplet digital PCR, oil emulsion of 20,000 unique reactions

- CRISPR: 20 bp oligo binds to target and Cas13 cuts away a palindromic sequence that releases fluorophores for detection

- Next-Gen Sequencing (NGS), NextSeq or NovaSeq
PCR vs. Isothermal

- RT-qPCR: most laboratory-based test
 - Usually Turnaround Time (TAT) is several hours to days
 - Transit time
 - Aliquoting and batching
 - Cepheid Xpert, bioMérieux BioFire: most common PCR tests used as point-of-care
 - 45 minutes instrument runtime

- RT-isothermal: mainly deployed for point-of-care testing
 - Faster than traditional PCR
 - 5 to 15 minutes instrument runtime
 - ID Now, most common example in the US

Amplification
- PCR: Cycle of temp up and down, so Ct value = number of amplification
- Isothermal: Constant temp, no cycle values just continuous amplification (no Ct value)

Threshold
- Set by Tech (open)
- Set by manufacturer (Most tests)

Lower Ct value = Higher Viral Load
Higher Ct value = Lower Viral Load
PCR vs. Isothermal

<table>
<thead>
<tr>
<th></th>
<th>PCR</th>
<th>Isothermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplification</td>
<td>Cycle of temp up and down, so Ct value = number of amplification</td>
<td>Constant temp, no cycle values just continuous amplification (no Ct value).</td>
</tr>
<tr>
<td>Output detection</td>
<td>Fluorescence</td>
<td>Varies, colorimetric, fluorescence</td>
</tr>
<tr>
<td>Primer/Probes</td>
<td>Specific, targeted</td>
<td>Multiple primers/probes</td>
</tr>
<tr>
<td>Time</td>
<td>Set number of cycles (usually 40)</td>
<td>Until detected since there are no cycles; that is why it takes 5 to 15 minutes</td>
</tr>
<tr>
<td>Throughput</td>
<td>Can be very high by batching (i.e. run 96 samples at a time)</td>
<td>Single test use, so low throughput (need to run 1 at a time)</td>
</tr>
</tbody>
</table>

Isothermal compared to PCR

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Basu et al.</th>
<th>Harrington et al.</th>
<th>Zhen et al.</th>
<th>Smithgall et al.</th>
<th>Rhoads et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal Swab (dry swab)</td>
<td>Nasal Swab (foam swab)</td>
<td>NP Swab in VTM</td>
<td>NP Swab in VTM</td>
<td>NPS in VTM, saline, SC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Testing Location</th>
<th>Micro Lab</th>
<th>Point of Care</th>
<th>Micro Lab</th>
<th>Micro Lab</th>
<th>Micro Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>101 ED pts</td>
<td>524 ED and inpatients</td>
<td>108 symptomatic pts</td>
<td>113 ED and inpatients</td>
<td>96 unspecified pts</td>
</tr>
<tr>
<td>Sensitivity (PCR test)</td>
<td>54.8%</td>
<td>74.7%</td>
<td>87.7%</td>
<td>73.9%</td>
<td>94%</td>
</tr>
</tbody>
</table>

Basu et al., 2020 https://doi.org/10.1128/JCM.01136-20
Harrington et al., 2020 https://doi.org/10.1128/JCM.00798-20
Zhen et al., 2020 https://doi.org/10.1128/JCM.00783-20
Rhoads et al., 2020 https://doi.org/10.1128/JCM.00786-20
Isothermal compared to PCR

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Basu et al.</th>
<th>Harrington et al.</th>
<th>Zhen et al.</th>
<th>Smithgall et al.</th>
<th>Rhoads et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal Swab (dry swab)</td>
<td>Nasal Swab (foam swab)</td>
<td>NP Swab in VTM</td>
<td>NP Swab in VTM</td>
<td>NPS in VTM, saline, SC</td>
<td></td>
</tr>
<tr>
<td>Testing Location</td>
<td>Micro Lab</td>
<td>Point of Care</td>
<td>Micro Lab</td>
<td>Micro Lab</td>
<td>Micro Lab</td>
</tr>
<tr>
<td>Population</td>
<td>101 ED pts</td>
<td>524 ED and inpatients</td>
<td>108 symptomatic pts</td>
<td>113 ED and inpatients</td>
<td>96 unspecified pts</td>
</tr>
<tr>
<td>Sensitivity (PCR test)</td>
<td>54.8%</td>
<td>74.7%</td>
<td>87.7%</td>
<td>73.9%</td>
<td>94%</td>
</tr>
</tbody>
</table>

- Variable collection (NS vs. NPS vs. VTM vs. swab types)
- Time of onset of symptoms or type of Sx unknown
- Bias in using PCR as both reference and comparison

Isothermal compared to PCR

Abbott post-EUA authorization studies (ID Now compared to 2 or more PCR platforms):

- **Urgent Care Clinic Study** (5 urgent care sites: NJ, TN, LA, TX, SC), 430 patients, on-going
 - Symptoms (2 or more), 96.2% sensitivity
- **The Everett Clinic Study**, 974 patients
 - 763 symptomatic, 192 asymptomatic, Tu et al. (AMP presentation)
 - 91.3% sensitivity
- **Hospitalized patients**, 518 patients, on-going
 - Symptomatic patients > 7 days from onset of symptoms showed 71.1% sensitivity, and < 7 days from onset showed 86.7%

How to put all this into context?

- Analytical Performance vs. Clinical Performance
 - Detection ≠ Prediction of Disease
 - Assay can be:
 - Too sensitive (false positive)
 - Not specific enough (false negative)
 - IVD (in vitro diagnostic) test development usually takes years to roll out (+ robust clinical trials)
 - Need to look at prevalence to understand Positive and Negative Predictive Agreement (PPA, NPA), i.e. 5% vs. 30%

- For Infection Prevention and Control professionals, there is another question to ask:
 - Does detection = transmissibility?

Characteristics of select assays

<table>
<thead>
<tr>
<th>Target(s)</th>
<th>Abbott m2000</th>
<th>Roche Cobas 6800</th>
<th>DiaSorin MDX</th>
<th>Cepheid GeneXpert</th>
<th>Abbott ID Now</th>
</tr>
</thead>
<tbody>
<tr>
<td>SARS-2 RdRp, N</td>
<td>Orf1ab, E</td>
<td>Orf1ab, S</td>
<td>N2, E</td>
<td>RdRp</td>
<td></td>
</tr>
<tr>
<td>Probe Combined (1 Ct value)</td>
<td>Separate (2 Ct values)</td>
<td>Separate (2 Ct values)</td>
<td>Separate (2 Ct values)</td>
<td>Multiple (No Ct values)</td>
<td></td>
</tr>
<tr>
<td>Highest Ct value</td>
<td>32.5</td>
<td>40</td>
<td>40</td>
<td>45</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Misleading to compare Ct values across platforms

Packet Insert Information, accessed Nov 1, 2020
Personal communications with each manufacturer
Characteristics of select assays

- Ct values of different targets from the same assay can be vastly different
 - Target A 26.7 vs. Target B 31.2, and this is NOT consistent across patients, some Target A < Target B, others Target A > Target B

<table>
<thead>
<tr>
<th>SARS-2 Target(s)</th>
<th>Abbott m2000</th>
<th>Roche Cobas 6800</th>
<th>DiaSorin MDX</th>
<th>Cepheid GeneXpert</th>
<th>Abbott ID Now</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe</td>
<td>RdRp, N</td>
<td>Orf1ab, E</td>
<td>Orf1ab, S</td>
<td>N2, E</td>
<td>RdRp</td>
</tr>
<tr>
<td>Combined (1 Ct value)</td>
<td>Separate (2 Ct values)</td>
<td>Separate (2 Ct values)</td>
<td>Separate (2 Ct values)</td>
<td>Multiple (No Ct values)</td>
<td></td>
</tr>
<tr>
<td>Highest Ct value</td>
<td>32.5</td>
<td>40</td>
<td>40</td>
<td>45</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Target A Ct value ≠ Target B Ct value

Characteristics of select assays

- Ct values of different targets using the same Probe read out can be misleading
 - Can’t assume Target A and Target B contributes equally
 - Some will be 50:50, some 40:60, some 60:40 etc…

<table>
<thead>
<tr>
<th>SARS-2 Target(s)</th>
<th>Abbott m2000</th>
<th>Roche Cobas 6800</th>
<th>DiaSorin MDX</th>
<th>Cepheid GeneXpert</th>
<th>Abbott ID Now</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe</td>
<td>RdRp, N</td>
<td>Orf1ab, E</td>
<td>Orf1ab, S</td>
<td>N2, E</td>
<td>RdRp</td>
</tr>
<tr>
<td>Combined (1 Ct value)</td>
<td>Separate (2 Ct values)</td>
<td>Separate (2 Ct values)</td>
<td>Separate (2 Ct values)</td>
<td>Multiple (No Ct values)</td>
<td></td>
</tr>
<tr>
<td>Highest Ct value</td>
<td>32.5</td>
<td>40</td>
<td>40</td>
<td>45</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Target A abundance ≠ Target B abundance
Other considerations

- Regulatory compliance: per FDA EUA status, need to use these assays as qualitative detection
 - Reporting Ct values, makes them quasi quantitative

- Translating Ct values to a quantification (Log10 copies/mL or IU) is even more challenging
 - Calibration material is NOT universal, viral load between assays will be inconsistent
 - Synthetic materials don’t cover the full genome
 - Assays were developed as qualitative tests, so Ct values are not linear at higher Ct values (lower viral load)

- Sample type challenges

Can we quantitate like CMV, HIV, HCV?

- Sample type: homogenous vs. heterogeneous matrix

- Blood is a homogenous (evenly distributed)

- NP swab is heterogeneous (not evenly distributed): collection bias, impact of swab, stabilizing media (VTM, saline, others)
 - Sufficient for qualitative detection but inconsistent for viral load

- Virology and viral shedding: uncertain whether viral shedding in the nasopharynx can be used to monitor viral shedding elsewhere like lower respiratory/lungs
Take Home Message

- Molecular method should be used to diagnose active infection

- Unlike in most viral infections, anti-SARS-CoV-2 IgG and IgM come up around the same time

- IgM only lasts 2-3 weeks

- Due to major limitations and pitfalls, Ct values should not be used as basis for clinical decision making

Platforms used at DUHS

<table>
<thead>
<tr>
<th>Microbiology Lab</th>
<th>Point of Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Sara MDX</td>
<td>Abbott ID Now</td>
</tr>
<tr>
<td>Thomas Fisher</td>
<td>www.abbott.com</td>
</tr>
<tr>
<td>Roche Cobas 4800</td>
<td>www.suntimes.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mol Path/Vaccine Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott m2000</td>
</tr>
</tbody>
</table>
DUHS Clinical Microbiology Lab

Thank You!
Questions?