Diagnosis, Treatment, and Prevention of Urinary Tract Infections in Post-Acute and Long-Term Care Settings: A Consensus Statement From AMDA’s Infection Advisory Subcommittee

Muhammad S. Ashraf MBBS, FIDSA a,*, Swati Gaur MD, MBA, CMD, AGSFb, Oluma Y. Bushen MD, CMD c, Teena Chopra MD, MPH d, Philip Chung PharmD, MS, BCPS, BCIDP f, Kalin Clifford PharmD, BCPS, BCGP g, Elizabeth Hames DO, CMD h, Cees M.P.M. Hertog MD i, Amar Krishna MD e, Dheeraj Mahajan MD, FACP, CMD, CIC j, David R. Mehr MD, MS k, Vycki Nalls GNP-BC, CNS, ACHPN l, Theresa Ann Rowe DO m, Steven J. Schewe RN, MPH, MSN, CIC n, Philip D. Sloane MD, MPH o, Kavita K. Trivedi MD p, Laura W. van Buul PhD q, Robin L.P. Jump MD, PhD s, on behalf of the Infection Advisory Subcommittee for AMDA—The Society of Post-Acute and Long-Term Care Medicine

a Division of Infectious Diseases, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
b New Horizons Nursing Facilities, Gainesville, GA
c Royal C. Johnson VA Medical Center, Sioux Falls, SD
d Department of Internal Medicine, USD Sanford School of Medicine, Sioux Falls, SD
e Division of Infectious Diseases, Wayne State University, Detroit, MI
f Department of Pharmacy, Nebraska Antimicrobial Stewardship Assessment and Promotion Program, Nebraska Medicine, Omaha, NE
g Department of Geriatrics and Pediatrics, Department of Pharmacy Practice, Texas Tech University Health Sciences Center—School of Pharmacy, Dallas, TX
h Department of Geriatrics, NSU-COM, Broward Health, Fort Lauderdale, FL
i Department of General Practice and Elderly Care Medicine, Amsterdam Public Health research institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
j Chicago Internal Medicine Practice and Research (CIMPAR, SC), Oak Park, IL
k MU Center for Patient-Centered Outcomes Research, Columbia, MO
l Capital Caring Hospice, Merrifield, VA
m General Internal Medicine and Geriatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
n Saylorsburg, PA
o Department of Family Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC
p Trivedi Consults LLC, Berkeley, CA
q Geriatric Research Education and Clinical Center (GRECC), and the Specialty Care Center of Innovation, at the VA Northeast Ohio Healthcare System, Cleveland, OH
r Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
s Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH

text:

ABSTRACT

The diagnosis and management of urinary tract infections (UTIs) among residents of post-acute and long-term care (PALTC) settings remains challenging. Nonspecific symptoms, complex medical conditions, insufficient awareness of diagnostic criteria, and unnecessary urine studies all contribute to the
Despite being among the most common infections, the diagnosis and management of urinary tract infections (UTIs) remains challenging, particularly among residents of post-acute and long-term care (PALTC) settings. Insufficient awareness of evidence-based guidelines regarding UTIs, entrenched practice patterns, as well as pressure from other staff and concerned family members can all contribute to over-diagnosis and unnecessary antibiotic use for presumed UTIs. Furthermore, subtle changes in a resident’s behavior status may prompt a concern for a UTI without consideration of whether there are clinical signs and symptoms that localize to the genitourinary tract. Additional challenges relate to specifying criteria for ordering urinalyses and urine cultures, collecting urine samples to minimize contamination, and interpreting laboratory results appropriately. Furthermore, for PALTC residents who are nonverbal, have a history of pathology related to the urinary tract, or who are otherwise perceived as vulnerable or immune compromised, clinicians may have a lower threshold to attribute nonspecific symptoms to a UTI and, subsequently, to prescribe antibiotics.

Antibiotic use contributes to the selection of multidrug-resistant organisms and also increases the risk of Clostridioides difficile infection. In 2013, the Centers for Disease Control and Prevention (CDC) estimated that multidrug-resistant organisms and C difficile caused over 2 million infections, with over 1% of those infections resulting in death. Being a resident of a PALTC setting is a notable risk factor for colonization and infection with multidrug-resistant organisms and C difficile. Reducing unnecessary and inappropriate antibiotic use helps to mitigate risks related to these pathogens in PALTC settings. Previous studies have reported that more than 50% of antibiotics prescribed in PALTC settings for UTIs were inappropriate, indicating that this is an important opportunity to improve resident safety.

The Infection Advisory Subcommittee of AMDA—the Society for Post-Acute and Long-Term Care Medicine convened an expert review panel to review evidence about UTIs specifically in the PALTC setting. Panel members reviewed the existing evidence-based data and shared their expert opinions, focusing on best care practices, quality improvement, and resident-centered care. Here, we issue the panel’s consensus statement created to help guide clinicians through the diagnosis, treatment, and prevention of UTIs in PALTC residents.

Methods

The UTI consensus statement workgroup was convened in summer 2017. The purpose of the workgroup was to outline best practices for the care of residents in PALTC settings, with those best practices supported by evidence when available, and agreed upon by a group of experts. Most of the available evidence, which was not graded for strength, was based on the care of residents of skilled nursing facilities and long-term care environment, which we designate here using the more inclusive term PALTC settings. Recommendations made in this consensus statement should not override clinical judgment.

The panel began by deciding upon the topics and the questions to be addressed in the consensus statement. These topics and questions were assigned to the following 5 subgroups: scope of the problem/background (E.H., V.N.), diagnosis (D.M., S.S.), treatment (M.A., K.C., C.H., T.R., K.T., LvB), prevention (S.G., O.B., T.C., A.K.), and antibiotic stewardship (P.C., D.M., P.S.). The subgroups reviewed their topic, summarized the relevant literature, and submitted the summary to the chair (M.A.) of the workgroup. The chairs put together an initial draft of consensus statement which was shared with the entire workgroup for review. Group consensus was obtained on all the major recommendations during scheduled conference calls and email. Once consensus was obtained from the workgroup, the document was further edited for clarity and consistency by a core group (M.A., S.G., R.J.). Subsequent revisions achieved unanimous agreement for all recommendations (Supplementary Material 1). In addition, we have italicized the consensus recommendations that are specific to PALTC residents (ie, recommendations that move beyond those found in more general guidelines that address asymptomatic bacteriuria (ASB) and UTIs). The consensus statement was reviewed and approved by the Infection Advisory Subcommittee, Clinical Practice Steering Committee of AMDA and the AMDA Board of Directors.

Definition of Urinary Tract Infections

UTI refers to an infection anywhere in the genitourinary tract: cystitis is the most commonly encountered UTI syndrome in clinical practice. For cystitis, urinary symptoms are usually confined to the bladder. These are dysuria, frequency, gross hematuria, suprapubic tenderness, new or worsening urinary incontinence or urgency. Pyelonephritis is a less common but more severe infection involving the renal parenchyma. Patients with pyelonephritis may present with fever and chills, back pain, nausea, and vomiting; localizing urinary symptoms may or may not be present. Catheter-associated urinary tract infection (CAUTI) refers to UTIs that develop in individuals with an indwelling urinary catheter.

ASB is often confused with UTI. ASB is bacteriuria in an individual without signs or symptoms of infection that localizes to the urinary tract. Individuals with ASB will have a positive urine culture with or without pyuria, detected as white blood cells on urinalyses. In PALTC settings, the prevalence of ASB is as high as 50% for female residents and 40% for male residents. Subsequently, a high proportion of urine cultures sent for nonspecific symptoms may return as “positive,” leading to unnecessary antibiotic prescriptions. Although multiple tools exist to support clinicians in distinguishing between ASB and UTIs, overall management of urinary tract infections in the PALTC continuum remains complex and challenging.

Diagnosis of UTIs

Diagnostic criteria for UTI require the presence of clinical signs and symptoms that localize to the genitourinary tract (Table 1). Dark, cloudy, or foul-smelling urine is not sufficient to indicate a UTI and may instead reflect mild dehydration or changes to diet or
Table 1

<table>
<thead>
<tr>
<th>UTI Syndrome and Associated Clinical and Microbiological Findings</th>
<th>Recommended Treatment and Duration</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic bacteriuria</td>
<td>No antibiotics</td>
<td>In general, asymptomatic bacteriuria does not require treatment. However, screening for asymptomatic bacteriuria along with targeted short course of antibiotic treatment (1 or 2 doses) is recommended prior to a urologic procedure associated with mucosal trauma. Antibiotics in these cases should be initiated 30–60 min before the procedure.</td>
</tr>
<tr>
<td>Diagnosis and test results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥100,000 colony forming units/mL of ≥1 species of bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signs and symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nothing that localizes to the genitourinary tract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute simple cystitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosis and test results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>100,000 colony forming units/mL of ≥2 species of bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>100 colony forming units/mL of ≥1 species of bacteria in a specimen collected by in-and-out catheter</td>
<td>Trimefomycin, 5 d</td>
<td>Male patients and those women with cystitis who are identified to be at high risk for treatment failure (Table 2) may require treatment for 7 d. Longer courses (8 to 14 d) are usually not necessary in these patients except when there is a delayed response to treatment or severe illness (eg, sepsis, bacteremia).</td>
</tr>
<tr>
<td>Signs and symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Localizing to the bladder such as acute dysuria, suprapubic tenderness, new or worsening incontinence, frequency, urgency or gross hematuria</td>
<td>Nitrofurantoin, 5 d</td>
<td>Nitrofurantoin and fosfomycin should not be used when the infection is suspected to extend beyond the bladder and in severely ill patients (eg, sepsis, bacteremia). Reserve fosfomycin use for treatment of acute simple cystitis with highly resistant gram-negative pathogens and for whom hospitalization and/or intravenous antibiotic therapy is not warranted. Additional doses of fosfomycin will be required if intended treatment duration is >3 d. Fluoroquinolones (eg, ciprofloxacin and levofloxacin) are no longer considered first-line treatment for UTIs and their use should be minimized. Moxifloxacin should not be used for UTIs.</td>
</tr>
<tr>
<td>CAUTI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosis and test results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>100,000 colony forming units/mL of ≥1 species of bacteria</td>
<td>For patients with a delayed response to treatment, 10-14 d of antibiotics is reasonable</td>
<td>It is important to note that a CAUTI can be present with lower colony counts of bacteria (>100 to 1000 colony forming units/mL) but most persons with CAUTI have colony counts >100,000 colony forming unit/mL. CAUTI can lead to complications such as prostatitis, epididymitis, and epididymo-orchitis in male patients, so presence of acute pain, swelling, or tenderness of the testes, epididymis, or prostate should trigger evaluation for these diagnoses. Presence of costovertebral angle tenderness on exam suggests renal involvement.</td>
</tr>
<tr>
<td>Signs and symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systemic or nonspecific, such as fever, rigors/chills, or new onset-clear delirium with no other identified cause or Localizing to genitourinary tract such as suprapubic or costovertebral angle tenderness or Acute pain, swelling, or tenderness of the testes, epididymis, or prostate (in men) or If a catheter was removed in the previous 48 hours, presence of signs and symptoms that localizes to the genitourinary tract such as urgency, frequency, dysuria, gross hematuria, suprapubic tenderness, or costovertebral angle tenderness</td>
<td>Trimethoprim/Sulfamethoxazole, 14 d</td>
<td>Nitrofurantoin and fosfomycin should not be used to treat pyelonephritis. Pyelonephritis may present without symptoms of cystitis. Shorter (7 to 10 d) treatment of trimethoprim/sulfamethoxazole may be appropriate in those select patients with rapid defervescence. Pelvic or perineal pain in men can suggest accompanying prostatitis.</td>
</tr>
<tr>
<td>Acute pyelonephritis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosis and test results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>100,000 colony forming units/mL of ≤2 species of bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>100 colony forming units/mL of ≥1 species of bacteria in a specimen collected by in-and-out catheter</td>
<td>Beta-lactams, 10-14 d</td>
<td></td>
</tr>
<tr>
<td>Signs and symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlocalizing, suggesting that the illness extends beyond the bladder, such as fever, rigors/chills, marked fatigue/malaise, nausea, or vomiting and Localizing to the genitourinary tract, such as dysuria, suprapubic tenderness, costovertebral angle tenderness, pelvic or perineal pain (men), new or worsening incontinence, frequency, urgency, or gross hematuria</td>
<td>Fluoroquinolones, 7 d</td>
<td></td>
</tr>
<tr>
<td>Recommended Treatment and Duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosis and test results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>100,000 colony forming units/mL of ≥1 species of bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signs and symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nothing that localizes to the genitourinary tract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute pyelonephritis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosis and test results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>100,000 colony forming units/mL of ≥1 species of bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>100 colony forming units/mL of ≥2 species of bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>100 colony forming units/mL of ≥1 species of bacteria in a specimen collected by in-and-out catheter</td>
<td>Beta-lactams, 10-14 d</td>
<td></td>
</tr>
<tr>
<td>Signs and symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlocalizing, suggesting that the illness extends beyond the bladder, such as fever, rigors/chills, marked fatigue/malaise, nausea, or vomiting and Localizing to the genitourinary tract, such as dysuria, suprapubic tenderness, costovertebral angle tenderness, pelvic or perineal pain (men), new or worsening incontinence, frequency, urgency, or gross hematuria</td>
<td>Fluoroquinolones, 7 d</td>
<td></td>
</tr>
</tbody>
</table>

*Clinical and microbiological findings in this table have been provided to highlight differences in various UTI syndromes. PALTC settings are recommended to adapt one of the published clinical algorithms to guide the diagnosis and decision to initiate antibiotics for residents with a suspected UTI. When choosing an antibiotic agent, clinicians will also need to consider additional factors including (but not limited to) resident allergies, co-morbidities, potential drug-drug interactions, availability, local resistance pattern/urine culture results, cost, and overall clinical status. Similarly, final treatment duration will also depend on overall clinical condition and response to the treatment. More recently published criteria usually define fever as single oral temperature of ≥100 °F, or repeated oral temperatures of ≥99 °F, or increase in temperature of ≥2 °F over baseline.

medications. Furthermore, nonspecific symptoms, including change in cognition, agitation, decreased appetite, and falls, are not symptoms of UTI, especially when genitourinary tract specific signs and symptoms are absent.12,21–24

Unfortunately, making a diagnosis of UTI is particularly difficult in frail and medically complex residents in PALTC, some of whom may not be able to verbalize their symptoms. A study of older adults evaluated in the emergency department compared the accuracy of emergency department physicians’ diagnoses, the Leob criterion for starting antibiotics, and CDC surveillance definitions to identify patients with UTIs, using retrospective chart review by experts as the gold standard.12,25 Of 424 older adults seen in the
emergency department, the authors identified 19 cases of UTI. From the same cohort, emergency department physicians identified 24 cases whereas the Loeb minimum criteria and CDC surveillance definitions detected 13 and 5 cases, respectively. Although based on a small number of cases, these results reflect the common clinical challenge of accurately diagnosing UTIs in older adults. Clinicians must consider both clinical presentation and diagnostic test results when evaluating a resident for a potential UTI.

Consensus-Based Criteria for Diagnosing UTIs

Several consensus-based criteria regarding UTIs in PALTC residents have been developed. The McGeer criteria, developed in the 1990s and updated in 2012, were among the first commonly used criteria specific to PALTC settings21,26 and helped to inform the National Healthcare Safety Network (NHSN) definitions, most recently updated in 2018.27 Both the McGeer criteria and the NHSN definitions were developed for surveillance purposes, that is to retrospectively measure and consistently identify cases to compare UTI rates over time and among institutions. These surveillance definitions were not developed with the intent to guide diagnosis of UTI though they are sometimes used for that purpose. A study of 130 patients in a tertiary care facility compared cases of CAUTI as determined using the 2009 NHSN definitions to clinical CAUTIs. Leekha et al found that approximately 50% of NHSN-defined cases were not considered clinical CAUTIs and that approximately 60% of clinical CAUTIs did not meet NHSN definitions.18 Based on these findings, we recommend that surveillance criteria should not be routinely used for establishing diagnosis and making decisions about initiating antibiotic treatment for UTIs.

Other consensus criteria help guide the diagnosis and decisions about initiating antibiotics in PALTC residents in whom there is a concern for UTI. In 2001, Loeb et al developed a consensus statement...
describing the minimum criteria for initiating antibiotics in PALTC residents with possible infection.12 Commonly referred to as the Loeb minimum criteria, the statement describes the clinical signs and symptoms that should be present prior to starting an antibiotic and is more prospective in nature than surveillance definitions. For residents without an indwelling urinary catheter, the signs and symptoms are acute dysuria alone or fever (100°F or 2.4°C over baseline) and at least one of the following signs or symptoms that localize to the genitourinary tract: frequency, gross hematuria, suprapubic tenderness, costovertebral angle tenderness and new or worsening urinary incontinence, or urgency. For residents with an indwelling urinary catheter, clinical signs and symptoms of a CAUTI include the presence of at least one of the following: fever, new costovertebral tenderness, rigors (shaking chills), or new onset of delirium.

The Agency for Healthcare Research and Quality (AHRQ) also developed criteria, which were incorporated into a standard communication and decision aid tool that is being adopted by PALTC settings in the United States.19 Per the AHRQ tool, for residents without an indwelling urinary catheter, the diagnosis of UTI is based on acute dysuria alone or fever (100°F) with any one of the following new or worsening signs and symptoms: urgency, frequency, back or flank pain, suprapubic pain, gross hematuria, and urinary incontinence. For afebrile residents without an indwelling urinary catheter and who do not have acute dysuria, the diagnosis of UTI requires at least 2 of the following signs and symptoms: urgency, frequency, suprapubic pain, gross hematuria, and urinary incontinence. For residents with an indwelling catheter, one of the following signs and symptoms needs to be present to consider a diagnosis of CAUTI: back or flank pain, acute pain, rigors/shaking chills, new dramatic change in mental status, hypotension and fever (100°F or repeated temperature of 99°F; or 2°F above the baseline), especially when there is no obvious alternative etiology for these symptoms. The use of this tool has been shown to result in 30% reduction in unnecessary antibiotics for UTIs.19

Recently, 2 publications describe using a Delphi consensus procedure to develop algorithms for the evaluation of PALTC residents in whom there is a concern for infection. The first used an international panel of experts to reach consensus on which of several signs and symptoms to consider during diagnostic evaluation and making decisions about initiating empiric antibiotics for UTI in older adults with frailty.15 The resulting decision tool recognizes both specific and nonspecific signs and symptoms that are associated with UTI in practice, indicating combinations of those signs and symptoms that justify antibiotic prescribing (Figure 1). The second publication describes a consensus reached by a panel of geriatricians practicing in PALTC settings and did not reach consensus that dysuria alone is sufficient for a diagnosis of cystitis (Figure 2).20 Both decision tools consider PALTC residents with and without urinary catheters, provide guidance on when to obtain a urinalysis and urine culture and when to start empiric antibiotics; neither has yet been tested using prospective clinical investigations.

We recommend that PALTC settings use one of the clinical algorithms discussed above to guide the diagnosis and decision to initiate antibiotics for residents with a suspected UTI and furthermore, to incorporate those criteria into their antibiotic stewardship policy. When selecting one of the clinical algorithms discussed above, we suggest that PALTC settings determine which seems most closely aligned with their current practices to facilitate the implementation.

Diagnostic Testing for UTIs

ASB, common among PALTC residents, does not lead to any increased morbidity or mortality yet the “positive tests” associated with ASB do lead to unnecessary antibiotic exposure and subsequent adverse events.1,28,29 We recommend that urinalysis and urine cultures should only be conducted for residents who meet clinical criteria for UTI as described above. Furthermore, we agree with previous expert recommendations1 to avoid sending urinalyses and urine cultures as a test-of-cure for asymptomatic residents.
Urinalyses are often used as a screening test for UTIs, with a “positive” or “dirty” test erroneously regarded as indicative of an infection. A urine dipstick that detects leukocyte esterase and/or nitrites has a low (45%) positive predictive value to indicate a UTI in older adults, although a negative urine culture (obtained prior to antibiotic exposure) rules out a UTI, a positive culture does not confirm a UTI.

Collecting Urine from People with and without Urinary Catheters

In residents without a urinary catheter, a voided midstream or clean catch specimen is ideal, though only approximately one-half of PALTC residents may be able to provide these samples. The absence of epithelial cells reflects a lack of contamination from the skin and indicates the specimen is of good quality. In men, cleansing the meatus is recommended; however, the evidence is equivocal on the need for cleansing in women. Women who are unable to provide a good quality voided specimen may require in and out urine catheterization. For men, temporary use of a condom catheter, in the range of 30 to 120 minutes, may permit collection of a good quality urine specimen.

Best practices for collecting urine specimens from residents with urinary catheters have been previously published. Our expert panel agrees with those previous recommendations, which are summarized here. Urine samples should not be obtained from a urine collection bag connected to an indwelling catheter (including a suprapubic catheter) unless a new catheter (along with the new collection bag) was inserted immediately prior to sample collection. In residents with urinary catheters present for over 2 weeks, the catheter should be replaced or discontinued altogether if no longer needed, prior to collecting a urine specimen. Indwelling urinary catheters, including suprapubic catheters, impair some of the normal defenses of the bladder. The catheters become a nidus for biofilm and removing the catheter may help improve symptoms. The most recent guidelines from the Infectious Diseases Society of America (IDSA) do not comment directly on removing and replacing urinary catheters in place for less than 2 weeks. A common practice is to obtain urine from the sampling port of catheters in place for less than 2 weeks. A small prospective study published in 1982 may provide some of the rationale for this 2-week time frame.

Role of Behavioral Change of a Resident in Diagnosing a UTI

Although the possibility of serious conditions presenting with nonspecific signs and symptoms is a classic principle of geriatric medicine, there is limited evidence to support behavioral change as evidence of a UTI. Nonetheless, cultures are commonly obtained from PALTC residents in the context of mental status changes, which in clinical experience is often simply a change in behavior. Because of the high prevalence of ASB in nursing home residents, there is a high likelihood that urine cultures collected from nursing home residents will be positive, regardless of the resident’s mental status at any given time.

Although it is clear that delirium can be present in urosepsis, current recommendations suggest that there should be systemic or specific urinary findings to attribute a UTI as the cause of delirium. In a resident with unequivocal delirium, a UTI diagnosis should only be considered if there is no other cause for these acute, fluctuating symptoms. For older adults with a change in mental status, the diagnosis of a UTI or CAUTI is a diagnosis of exclusion. Clinical criteria (as mentioned above) can assist clinicians in making diagnostic and treatment decisions for residents with a change in behavior.

Treatment of UTIs

Treatment of UTIs should include supportive care, most notably increased hydration. Other aspects of treatment include deciding when to start an antibiotic, choosing the appropriate agent, modifying the treatment plan based on clinical response and culture results if necessary, and continuing antibiotics for the appropriate duration, which depends on the UTI syndrome being treated (eg, cystitis, pyelonephritis, CAUTI). The presence or absence of complicating factors or warning signs such as fever, rigors, acute delirium, or unstable vital signs, may also influence some of those decisions. Screening for and treatment of ASB is not recommended for older adults residing in PALTC settings except before undergoing transurethral resection of the prostate or other urologic procedures associated with mucosal trauma.

Initiating Empiric Antibiotics in Suspected UTI

Antibiotic treatment for UTI should not be initiated unless clinical criteria for UTI are met. For residents who meet clinical criteria for a suspected UTI, we recommend sending a urine specimen for urinalysis and culture before initiating empiric antibiotics. For residents who meet clinical criteria for UTI and have severe symptoms with evidence of systemic infection (warning signs), clinicians should consider empiric treatment with broad-spectrum agents and then de-escalate based on the results of urine studies and the clinical course. For residents who meet clinical criteria for UTI and have mild symptoms (no warning signs), the selection of empiric antibiotics should be guided in part based on local resistance patterns, discussed in further detail below. When evaluating residents for presence of clinical criteria for UTI, clinicians should also take into consideration the fact that in some clinical scenarios localizing signs and symptoms (suggestive of UTI) might just be a manifestation of an alternative etiology (eg, frequency in a resident who was recently started on diuretic). If an alternative etiology is suspected for localizing signs and symptoms in a resident, clinicians should consider addressing that etiology.

For residents who do not meet clinical criteria for UTI (and do not have warning signs), but for whom clinical concern for UTI still exist, we recommend responding to this situation of diagnostic uncertainty with...
Choosing Empiric Antibiotics

Empiric treatment for UTIs in older adults generally follows the same treatment algorithm as in younger adults. If prior culture data are available, clinicians should review previously identified organisms and their susceptibilities. When clinicians considered susceptibility results from previous urine cultures, such as the preceding 6 to 24 months, three-quarters of empiric antibiotics provided adequate coverage for the current UTI. In contrast, only one-third of empiric therapy provided adequate coverage for a current UTI when the chosen antibiotics were not effective against previously identified pathogens. In the absence of prior culture data, we recommend that clinicians use facility or local resistance rates (ie, antibiograms) to select empiric antibiotics for residents with clinical signs and symptoms of a UTI. Recent literature offers suggestions for using antibiograms in PALTC settings.

The 2010 IDSA guidelines support the use of trimethoprim-sulfamethoxazole as first-line empirical therapy for acute uncomplicated/simple cystitis if local resistance rates of uropathogens causing acute uncomplicated cystitis do not exceed 20%. Escherichia coli, the most commonly identified pathogen in urine cultures, generally has low rates of resistance to nitrofurantoin, which can also be used as first-line empirical therapy. Although the Food and Drug Administration recommended against using nitrofurantoin in patients with a creatinine clearance (CrCl) ≤60 milliliters/minute (mL/min), recent data suggest that nitrofurantoin can be used effectively for cystitis regardless of renal function. The risk of pulmonary toxicity is greater in adults with a CrCl ≤30 mL/min and the Beers criteria recommend against use of nitrofurantoin in older adults >65 years with a CrCl ≤30 mL/min. More recently an AHRQ funded project used Delphi procedure to reach a consensus on a set of recommendations for the empirical treatment of cystitis in nursing home residents. An expert panel of 19 clinical pharmacists reached agreement that the preferred drugs for empiric treatment of uncomplicated cystitis were nitrofurantoin and trimethoprim-sulfamethoxazole. Clinicians should be aware of the risk of hyperkalemia with the use of trimethoprim-sulfamethoxazole in those with advanced renal disease especially when their CrCl is <15 mL/min. For patients with CrCl of <15 mL/min alternative antibiotic agents should be used for treatment of UTI.

If there is significant concern for multidrug-resistant organisms, oral fosfomycin trometamol may be effective. This is dosed as 1 oral sachet every 3 days, with most courses involving 1 to 2 doses. Because of the limited number of agents effective against multidrug-resistant gram-negative pathogens, particularly oral options, fosfomycin trometamol is an antibiotic that should be reserved for symptomatic residents with a recent or current urine culture indicating a highly resistant bacterial pathogen. Finally, fluoroquinolones are no longer considered first-line treatment for UTIs because of the high rate of resistance against these agents as well as risks for developing serious life-threatening or disabling side effects including prolongation of the QT interval, tendon rupture, hypoglycemia, rupture of an aortic aneurysm, peripheral neuropathy and other central nervous system (CNS) side effects.

If pyelonephritis is suspected, neither fosfomycin nor nitrofurantoin should be used. If planning to treat a resident for suspected pyelonephritis in PALTC settings with an oral antibiotic when susceptibility of the uropathogen is unknown, an initial dose of long-acting parenteral agent (such as ceftriaxone) is recommended. The culture results should be followed and antibiotics tailored once the susceptibility result of the uropathogen is available. It is also important to note that oral beta-lactam agents are less effective than other available oral agents (such as trimethoprim-sulfamethoxazole, ciprofloxacin or levofloxacin) for treatment of pyelonephritis. Oral beta-lactam agents should not be used for treatment of pyelonephritis when alternative treatment options are available and if used, an initial dose of long-acting parenteral agent (such as ceftriaxone) is recommended.

De-escalation of Antibiotics

Whenever possible, clinicians should use resident-specific factors and susceptibility results to de-escalate antibiotic therapy. With the increasing prevalence of multidrug-resistant organisms, reviewing urine culture and susceptibility results is a necessary component for providing good quality care to older adults. Monitoring for changing signs and symptoms may also be helpful in determining if antibiotic therapy is effective. In cases where organisms recovered from urine cultures are

Fig. 3. Example of an active monitoring order set. Reprinted with permission from Nace et al.
resistant to the empiric antibiotic selected and residents continue to experience UTI symptoms, therapy modification is warranted. However, if the resident clinically improved despite the discordant therapy, the organisms recovered from the urine culture may represent colonization and discontinuation of antibiotic therapy should be considered. Similarly, when a urine culture collected before initiation of empiric treatment is negative or the amount of growth reported is below the threshold for a positive culture, strong consideration should be given to stopping antibiotics and looking for another etiology of the symptoms.

De-escalation of antibiotic therapy once culture and susceptibility results are available is a cost-saving practice and may help decrease the incidence of adverse effects, slow the spread of multidrug-resistant organisms, reduce lengths of stay, and decrease overall mortality.54-57 After selection of an empiric antibiotic, the resident’s clinical response and the results of diagnostic studies should inform whether continuing antibiotics is warranted. If the initial antibiotic was a broad-spectrum agent and the culture results indicate that a more narrow-spectrum agent would be effective, clinicians should consider changing to the narrow-spectrum agent.

Length of Therapy

Table 1 outlines recommended treatment durations for UTI syndromes commonly managed in PALTIC settings and highlights the differences in the length of therapy for some commonly used agents. Evidence supports that for older adults with uncomplicated cystitis, a shorter duration of antibiotics (<7 days) has similar efficacy compared with a longer duration of antibiotics (≥7 days). In 2004, Vogel et al conducted a double-blind randomized controlled trial comparing 3 and 7 day courses of ciprofloxacin in older adults.58 They reported similar cure rates in both groups 2 days after completion of the treatment (98% vs 93%, \(P = .16 \)). Reinfection and relapse rates were similar at 6 weeks (14% vs 18%, \(P = .54 \) and 15% vs 13%, \(P = .83 \), respectively). Adverse events, however, were significantly less in the 3-day vs the 7-day group (0.9 vs 1.6 at 5 days and 1.2 vs 2.1 at 9 days, both \(P = .001 \)). A systematic review published in 2008 also concluded that for uncomplicated UTIs in older adults, 3 to 6 days of antibiotics is as effective as 7 to 14 days.59 Therefore, adult patients (including older adults) with cystitis who are not severely ill and are not at high risk for developing complications can be treated with fewer than 7 days of antibiotics.

Several factors may influence the length of therapy including the UTI syndrome being treated, the resident’s clinical response to care (ie, rapid improvement vs delayed clinical response) and the following complicating factors: structural or functional abnormalities of the urinary tract, immunosuppression, and certain chronic diseases (Table 2).61 Usual practice has been to treat patients with a potentially complicated UTI, including all men, with 10 to 14 days of antibiotics.62 Shorter lengths of therapy, even among individuals at high risk of recurrent or complicated infections, may be sufficient. A retrospective study of critically ill trauma patients with CAUTI showed that 3 to 5 days of antibiotic therapy led to a clinical cure rate of 82%.63 Another retrospective study of febrile UTIs among patients with neurogenic bladder found no difference in the clinical cure rate at 1 month post-treatment when comparing <10 days, 10 to 15 days or >15 days of antibiotic treatment.64 More recently, a randomized, double-blind, placebo-controlled, noninferiority trial compared 7- and 14-day courses of antibiotics for men and women with a febrile UTI.65 In women, 7 days of antibiotics was noninferior to 14 days for both short- and long-term cure. In men, 7 days of antibiotics was inferior to 14 days in achieving short term (10 to 18 days post-treatment) clinical cure (86% vs 88%, difference −11.2; 90% CI −20.6 to 1.8). However, the long-term clinical cure rates were similar (92% vs 91%, difference 1.8; 90% CI −5.3 to 8.4) indicating no difference in outcomes at 70 to 84 days post-treatment. Together, these findings suggest that the older scheme of classifying UTI as complicated or uncomplicated may no longer be useful for deciding the length of therapy.14 Instead, each individual should be evaluated on a case-by-case basis for clinical relevance of potential complicating factors. Furthermore, older age by itself should not influence treatment duration for various UTI syndromes.

For PALTIC residents who may be at higher risk of treatment failure, the length of antibiotic therapy should be based on the severity of the illness and response to the treatment. For most of these residents, 7 days of antibiotic treatment should be adequate if they respond promptly to antibiotics (within 72 hours). Longer durations (ie, 10-14 days) are reasonable for residents with severe illness, such as those with bacteremia, or a delayed response to treatment.

Table 2

Factors that may Predispose Residents With a UTI to Treatment Failure or Complications

<table>
<thead>
<tr>
<th>Complicating Factors</th>
<th>Clinical Examples</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstruction</td>
<td>Ureteric or urethral strictures, Tumors of the urinary tract, Urolithiasis, Prostatic hypertrophy, Diverticulae, Pelvicalyeal obstruction, Renal cysts, Congenital abnormalities</td>
<td>A history of obstruction, by itself, is not a complicating factor unless the obstruction is still ongoing. Older male patients have been historically considered to be at high risk as many presenting with UTI may also have underlying urologic abnormalities like prostatic hypertrophy. More recent evidence indicates that 7 d of antibiotic is sufficient to treat cystitis in men (see text). Prostatitis (which requires longer length of therapy) should be suspected in residents with recurrent cystitis or if resident also has fever or pelvic or perineal pain. Management of obstruction is also a key component of UTI treatment.</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>Indwelling urethral catheter, Intermitent catheterization, Uretic stent, Nephrostomy tube, Urological procedures</td>
<td>Frequently reassess the need for an indwelling catheter and if deemed unnecessary, remove the catheter.</td>
</tr>
<tr>
<td>Impaired voiding</td>
<td>Neurogenic bladder, Cystocele, Vesicoureteral reflux, ileal conduit</td>
<td>Risks of complication may depend on severity of the voiding impairment.</td>
</tr>
<tr>
<td>Metabolic abnormalities</td>
<td>Nephrocalcinosis, Medullary sponge kidney, Renal failure (eCrCl < 30 mL/min), Diabetes mellitus</td>
<td>Risks of complications in patients with diabetes with good glycemic control and without long-term diabetes complications will be lower than those with poor glycemic control and presence of diabetic complications.60</td>
</tr>
<tr>
<td>Immunocompromised</td>
<td>Renal transplant</td>
<td>eCrCl, estimated CrCl.</td>
</tr>
</tbody>
</table>

Content adapted from Nicolle LE; AMMI Canada Guidelines Committee.61
Prevention of UTIs

Role of Cranberry Formulations

Cranberries (genus Vaccinium, including the species V. oxycoccus, V. macrocarpon, V. microcarpum, and V. erythrocarpum) have been touted as a home remedy to prevent UTIs. One proposed mechanism is acidification of the urine though clinical trials have not found urinary acidification after the use of cranberry products to be a major factor in preventing UTIs. A second proposed mechanism is that proanthocyanidins (PACs) in cranberries may inhibit P-fimbriated E. coli from adhering to uroepithelial cells lining the bladder wall. Clinical studies, however, do not support a role for cranberry products as a preventative measure for UTIs among PALTC residents. A double-blind, placebo-controlled efficacy trial randomized 185 female nursing home residents to a daily dose of 2 cranberry capsules (72 mg PAC) or placebo for 1 year. The authors found no significant differences in the presence of bacteria with pyuria in the treatment vs control group. Furthermore, they found no significant differences in the following outcomes: bacteriuria with multidrug-resistant gram-negative bacteria, number of symptomatic UTIs, antibiotics administered for suspected UTIs, total antimicrobial utilization, rates of death, or hospitalization. Furthermore, a Cochrane systematic review found that the evidence of benefit resulting from cranberry juice is small and the authors did not recommend it as a means to prevent UTIs. Current evidence does not support the use of cranberry products for the prevention of UTI.

Role of Vaginal Estrogens

Pelvic prolapse, lack of estrogen, loss of lactobacilli in the vaginal flora, and increased periurethral colonization by E. coli may contribute to increased rates of UTI in aging women. A postmenopausal state is also often associated with vaginal atrophy; manifested as vaginal dryness, itching, dyspareunia, and urinary incontinence—symptoms which may mimic a UTI. Vaginal estriol preparations may help reduce the incidence of UTIs in postmenopausal women. In a randomized, placebo-controlled trial, Raz and Stamm studied the effects of topical estriol cream applied over an 8-month period in 93 postmenopausal women. The UTI rate was 0.5% in the treatment group compared with 5.9% in the placebo group. Eriksen et al. studied the effect of an estrogen pessary to reduce recurrent symptomatic and bacteriologically confirmed UTIs in a randomized, open-label trial of 108 postmenopausal women. The rate of recurrent UTIs was 51% in treatment group and 80% in the placebo group, with a cumulative likelihood of a disease-free interval of recurrent symptomatic UTIs was 20% in treatment group vs 51% in placebo group after 9 months. Clinical studies, however, do not support a role for cranberry products as a preventative measure for UTIs among PALTC residents. A double-blind, placebo-controlled efficacy trial randomized 185 female nursing home residents to a daily dose of 2 cranberry capsules (72 mg PAC) or placebo for 1 year. The authors found no significant differences in the presence of bacteria with pyuria in the treatment vs control group. Furthermore, they found no significant differences in the following outcomes: bacteriuria with multidrug-resistant gram-negative bacteria, number of symptomatic UTIs, antibiotics administered for suspected UTIs, total antimicrobial utilization, rates of death, or hospitalization. Furthermore, a Cochrane systematic review found that the evidence of benefit resulting from cranberry juice is small and the authors did not recommend it as a means to prevent UTIs. Current evidence does not support the use of cranberry products for the prevention of UTI.

Role of Prophylactic Antibiotics to Prevent Recurrent UTIs

The use of antibiotics to prevent recurrent uncomplicated UTIs remains an active topic of discussion. Although few studies specifically address PALTC residents, several focus on community-dwelling older women. Recent literature acknowledges that although prophylactic antibiotics may reduce recurrent UTIs, they also pose several risks, specifically medication side-effects, drug-drug interactions, C difficile infection, and selection for multidrug-resistant organisms. Specifically, a double-blinded randomized controlled trial compared trimethoprim with cranberry extract on the incidence of UTIs in women ≥45 years old. The authors reported that although differences were not statistically significant, trimethoprim use was associated with a slightly lower risk of recurrent UTI (cranberry vs trimethoprim; relative risk 1.6, 95% confidence interval [CI] 0.93–2.79) and a higher risk of study withdrawal because of adverse effects. A systematic review and meta-analysis of 3 randomized controlled trials of community-dwelling older women with recurrent UTIs found that long-term antibiotic use (daily use for 6 months) reduced the risk of microbiologically confirmed UTI by 24% (pooled RR 0.76; 95% CI 0.61–0.95) compared with control groups. Although the risk of mild and serious adverse effects were not different between the antibiotic-treated and control populations, one of the included studies found that after 1 month, over 80% of all urinary and fecal E. coli isolates were resistant to both trimethoprim-sulfamethoxazole, the prophylactic antibiotic, and to amoxicillin, which was not given as part of the clinical protocol. Three months after cessation of the antibiotic prophylaxis, the prevalence of E. coli resistant to trimethoprim-sulfamethoxazole and amoxicillin had not returned to baseline levels. E. coli isolates recovered from the control groups did not demonstrate increased antibiotic resistance. Although antibiotics may reduce the risk of recurrent, uncomplicated UTIs, the potential harms associated with long-term use, coupled with the prevalence of multidrug-resistant organisms among PALTC residents, argues against long-term antibiotic prophylaxis. Similarly, because of concerns about selection for multidrug-resistant organisms, systemic antibiotics should not be used to prevent infection in residents with short- or long-term indwelling urinary catheters. In residents with ASB, evidence supports the use of prophylactic antibiotics prior to urologic procedures associated with mucosal trauma, including transurethral resection of the prostate.

Role of Methenamine Salts

Methenamine salts have been used in clinical practice to prevent UTI. They are not used for treatment of active infection. Methenamine salts are hydrolyzed to ammonia and formaldehyde, which is responsible for the antibacterial activity of methenamine. The urinary concentration of formaldehyde, which also correlates with the antimicrobial activity in the urine, is dependent on the concentration of methenamine in the urine, the urine pH, and the time the drug remains in the bladder. It has been suggested that a urinary pH below 5.5 is needed to generate bacteriostatic concentrations of free...
formaldehyde from methenamine hippurate. Acidification of urine is usually achieved with additional high doses of vitamin C. Because methenamine efficacy also depends on the time the drug remains in the bladder, it is generally considered to have limited effectiveness in catheterized patients.

Several studies have evaluated the role of methenamine salts in preventing UTI but its effectiveness is not well-studied in PALTC settings. A Cochrane systematic review in 2012 analyzed 13 studies to evaluate the effectiveness of methenamine hippurate in preventing symptomatic UTI and ASB. Based on the subgroup analysis of 6 studies that assessed symptomatic UTI, methenamine hippurate was found to be effective in preventing UTI in patients without urinary tract abnormalities (RR 0.24, 95% CI 0.07–0.89) but not with urinary tract abnormalities (RR 1.54, 95% CI 0.38–6.20). However, the studies evaluating the impact on symptomatic UTI in patients without urinary tract abnormalities considered either pregnant women or patients undergoing gynecologic procedures.

Short-term treatment duration (7 days or less) significantly reduced symptomatic UTI in patients without urinary tract abnormalities (RR 0.14, 95% CI 0.05–0.38). Long-term treatment did not reveal similar benefits. In short, current evidence does not support the long-term use of methenamine salts for prevention of UTI.

Preventing Catheter-Associated UTIs

Although there is limited evidence on the benefits or harms of routine urinary catheter changes in those with long-term catheterization, CDC guidelines recommend against changing indwelling catheters or drainage bags at routine, fixed intervals. Urinary catheters that are obstructed or otherwise compromised (eg, a break in the closed system) or are implicated in an infection should be removed and replaced only if still indicated. Recognition of CAUTIs as the most common healthcare-acquired infection prompted regulatory changes to incentivize reduction of this preventable infection in both hospital and PALTC settings.

A large retrospective cohort study of SNFs found that in 2003, whereas 12.6% of residents had an indwelling urinary catheter on admission, only 4.5% of them still had a catheter in place during their annual assessment. A more recent observational cohort study of 28 nursing homes found that in 2013–2014, of 228 long-stay residents with an indwelling urinary catheter, 86% had an indication documented in their medical record and of those, 99% were for appropriate indications, which include strict output monitoring, acute or chronic urinary retention, end-of-life care, and to assist in healing sacral pressure ulcers in incontinent residents. These findings underscore that in general, PALTC settings have incorporated strategies to...
reduce the rate of CAUTIs, by only placing catheters when necessary and removing them whenever possible.

Further strategies to reduce the incidence of CAUTI in PALTC residents come from intervention bundles that incorporate technical and socioadaptive strategies.99,100 Technical features focus on aseptic insertion, training for catheter care, assessments, and stop orders. Socioadaptive strategies engage staff, residents, and their families along with emphasizing leadership and communication. These strategies proved effective at reducing CAUTI by over 50% (from 6.78 to 2.63 CAUTIs/1000 catheter days) among 404 community nursing homes.95 A similar intervention in Veterans Affairs nursing homes, termed Community Living Centers, where the baseline rates of CAUTI were lower (2.26 CAUTIs/1000 catheter days), did not yield similar reductions, likely a reflection of previous, successful efforts to reduce CAUTI.97,101 PALTC settings may want to review their CAUTI rates before dedicating resources specifically to a CAUTI reduction bundle.

For some PALTC settings, CAUTI-reduction might be incorporated into more comprehensive infection prevention efforts. A multimodal targeted infection prevention program implemented at 12 community nursing homes decreased both the prevalence of multidrug-resistant organisms among residents with indwelling devices and the incidence of CAUTIs.95 The program included active surveillance for infections, ongoing educational programs for staff, hand hygiene promotion, and preemptive barrier precautions for all residents with indwelling devices. Although resource intensive, this targeted infection prevention program for high-risk residents was ultimately cost-saving and also improve quality-adjusted life-years for residents.100 Implementing a comprehensive infection prevention and control bundle is a safe and effective strategy to reduce CAUTI in PALTC settings.

Applying Principles of Antibiotic Stewardship to UTIs in the PALTC Population

Antibiotic stewardship is defined as “a set of commitments and actions designed to optimize the treatment of infections while reducing adverse events associated with antibiotic use.”101 The CDC has established 7 core elements for antibiotic stewardship in nursing homes, which are reflected in the guidance used to assess compliance with CMS requirements for an antibiotic stewardship program.101–103 Table 3 summarizes the Core Elements and provides examples of how these apply to the diagnosis, treatment and prevention of UTIs in PALTC settings. We strongly encourage PALTC settings to adopt existing resources as they codify antibiotic stewardship policies and procedures tailored to their organization and also recommend incorporating antibiostewardship into their Quality Assurance and Performance Improvement program.104

Conclusions

In general, the workgroup’s recommendations for the diagnosis, treatment, and prevention of UTIs in PALTC residents aligns with previous expert guidance, emphasizing the use of clinical signs and symptoms, evidenced-based diagnostic criteria, critical interpretation of diagnostic studies, and judicious use of antibiotics.1–4 To help prescribing clinicians apply this consensus statement to their clinical practice, we strive to provide reasoning for each recommendation and advise that guidance provided in this consensus statement should not override clinical judgment. Although salient knowledge gaps remain, our review of the literature and clinical experience indicate that incorporating evidence-based practices into the care of PALTC residents with suspected UTIs will yield tangible improvements in resident safety, enhance quality of life, and reduce the prevalence of multidrug-resistant organisms.

References

49. Howell AB, Vorsa N, Foo LL. Biofilm of the adherence of P-fimbriated Escherichia coli to uroepithelial-cell surfaces by proanthocyanidin extracts from cranberries; 2009.

Supplementary Material 1. Summary of Recommendations From the UTI Consensus Statement

This document summarizes the recommendations of the UTI consensus statement. Some recommendations concur with guidelines about UTIs among adults in general. Others represent the UTI consensus statement workgroup’s review of available evidence (evidenced-based; EB), a consensus statement (CS) or both.

Definition of Urinary Tract Infections

UTI refers to an infection anywhere in the genitourinary tract.

- Cystitis: urinary symptoms are usually confined to the bladder. These are dysuria, frequency, gross hematuria, supra-pubic tenderness, and new or worsening urinary incontinence or urgency.
- Pyelonephritis is a more severe infection involving the renal parenchyma. Patients with pyelonephritis may present with fever and chills, back pain, nausea, and vomiting; localizing urinary symptoms may or may not be present.
- Catheter-associated urinary tract infection (CAUTI) refers to UTIs that develop in individuals with an indwelling urinary catheter.

Diagnosis of UTIs

Clinical Diagnosis of UTI

(1) Post-acute and long-term care (PALTC) settings should use one of the clinical algorithms (eg, Loeb Minimum Criteria, Agency for Healthcare Research and Quality (AHRQ) decision tool, Improving Outcomes of UTI (IOU) Consensus Guideline, International Delphi Consensus decision tool) to guide the diagnosis and decision to initiate antibiotics for residents with a suspected UTI. PALTC should incorporate those criteria into their antibiotic stewardship policy. When selecting one of the clinical algorithms discussed above, PALTC settings should determine which seems most closely aligned with their current practices in order to facilitate the implementation. (CS)

(2) Surveillance criteria (eg, McGeer criteria, National Healthcare Safety Network (NHSN) definitions) should not be routinely used in clinical practice for establishing the diagnosis of UTIs. (EB)

(3) For older adults with a change in mental status, the diagnosis of a UTI or CAUTI should be a diagnosis of exclusion. In a resident with unequivocal delirium, a UTI diagnosis should only be considered if there is no other cause for these acute, fluctuating symptoms. Clinical criteria can assist clinicians in making diagnostic and treatment decisions for residents with a change in behavior. (EB, CS)

Diagnostic testing for UTIs

(1) Urinalysis and urine cultures should only be conducted for residents who meet clinical criteria for UTI. (EB)

(2) Avoid sending urinalyses and urine cultures as a test-of-cure for asymptomatic residents. (CS)

(3) In residents without a urinary catheter, a voided midstream or clean catch specimen should be attempted. If PALTC residents are unable to provide a clean sample, an in-and-out catheterization may be necessary. (EB)

(4) Urine samples should not be obtained from a urine collection bag connected to an indwelling catheter (including a supra-pubic catheter) unless a new catheter and new collection bag was inserted immediately prior to sample collection. (EB)

(5) In residents with urinary catheters present for over two weeks, the catheter should be replaced prior to collecting a urine specimen. (EB)

(6) When urinary catheter have been in place for less than 2 weeks, the decision to obtain a urine sample from the sampling port of the existing catheter or to remove the catheter before obtaining a urine sample should be made on case-by-case basis. (CS)

Treatment of UTIs

Asymptomatic Bacteriuria

1. Screening for and treatment of ASB is not recommended for older adults residing in PALTC facilities except before undergoing transurethral resection of the prostate or other urologic procedures associated with mucosal trauma. (EB)

Initiating Empiric Antibiotics in Suspected UTI

1. Antibiotic treatment for UTI should not be initiated unless clinical criteria for UTI are met. (EB)

2. For residents who meet clinical criteria for a suspected UTI, send a urine specimen for urinalysis and culture before initiating empiric antibiotics. (CS)

3. For residents who meet clinical criteria for UTI and have severe symptoms with evidence of systemic infection (warning signs), clinicians should consider empiric treatment with broad-spectrum agents and then de-escalate based on the results of urine studies and the clinical course. (CS)

4. The culture results should be followed and antibiotics tailored once the susceptibility result of the uropathogen is available. (CS)

5. For residents who do not meet clinical criteria for UTI (and do not have warning signs), but for whom clinical concern for UTI still exist, we recommend responding to this situation of diagnostic uncertainty with ‘active monitoring’ protocol. (EB)

6. For residents who meet clinical criteria for UTI and have mild symptoms (no warning signs), the selection of empiric antibiotics should be guided in part based on local resistance patterns. (EB)

7. If prior culture data are available, clinicians should review previously identified organisms and their susceptibilities to help guide antibiotic choice. (EB, CS)

8. In the absence of prior culture data, clinicians should use facility or local resistance rates (ie, antibiograms) to select empiric antibiotics for residents with clinical signs and symptoms of a UTI. (EB)

9. Nitrofurantoin and trimethoprim-sulfamethoxazole are considered first line drugs for empiric treatment of uncomplicated (acute simple) cystitis if permissible by the sensitivity patterns and resident factors. (CS)

10. Because of the limited number of agents effective against multidrug-resistant gram-negative pathogens, particularly oral options, fosfomycin trometamol should be reserved only for symptomatic residents with a recent or current urinal culture indicating a highly resistant bacterial pathogen. (CS)

11. Fluoroquinolones are no longer considered first-line treatment for UTIs because of the high rate of resistance against these agents as well as risks for developing serious
life-threatening or disabling side effects including prolongation of the QT interval, tendon rupture, hypoglycemia, rupture of an aortic aneurysm, peripheral neuropathy and other central nervous system (CNS) side effects. (EB)

(12) If pyelonephritis is suspected, fosfomycin or nitrofurantoin should not be used. (EB)

(13) If planning to treat a resident for suspected pyelonephritis in PALTC settings with an oral antibiotic when susceptibility of the uropathogen is unknown, an initial dose of long-acting parenteral agent (such as ceftriaxone) is recommended. (CS)

De-escalation of Antibiotics

(1) Whenever possible, clinicians should use resident-specific factors and susceptibility results to de-escalate antibiotic therapy to the narrowest spectrum antibiotic that the bacterium is susceptible to. (CS)

(2) If the resident clinically improved despite the discordant therapy, the organisms recovered from the urine culture may represent colonization and discontinuation of antibiotic therapy should be considered. (CS)

(3) When a urine culture collected before initiation of empiric treatment is negative or the amount of growth reported is below the threshold for a positive culture, strong consideration represents colonization and discontinuation of antibiotic therapy should be given to stopping antibiotics and looking for another etiology of the symptoms. (CS)

Length of Therapy

(1) Adult patients (including older adults) with cystitis who are not severely ill and are not at high risk for developing complications can be treated with fewer than 7 days of antibiotics. (EB)

(2) For PALTC residents who may be at higher risk of treatment failure, the length of antibiotic therapy should be based on the severity of the illness and response to the treatment. For most of these residents, 7 days of antibiotic treatment should be adequate if they respond promptly to antibiotics (within 72 hours). Longer durations (ie, 10-14 days) are reasonable for residents with severe illness, such as those with bacteremia, or a delayed response to treatment. (CS)

Prevention of UTIs

(1) Current evidence does not support the use of cranberry products for the prevention of UTI. (EB)

(2) For postmenopausal women, local (vaginal) estrogen therapy should be considered for the prevention of recurrent UTIs. Moreover, it should be considered to treat atrophic vaginitis, the symptoms of which often mimic UTI. (EB)

(3) Although antibiotics may reduce the risk of recurrent, uncomplicated UTIs, the potential harms associated with long-term use, coupled with the prevalence of multidrug-resistant organisms among PALTC residents, argues against long-term antibiotic prophylaxis. Similarly, because of concerns about selection for multidrug-resistant organisms, systemic antibiotics should not be used to prevent infection in residents with short- or long-term indwelling urinary catheters. (EB, CB)

(4) Current evidence does not support the long-term use of methenamine salts for prevention of UTI. (EB)

(5) CDC guidelines recommend against changing indwelling catheters or drainage bags at routine, fixed intervals. (EB)

(6) Implementing a comprehensive infection prevention and control bundle is a safe and effective strategy to reduce CAUTI in PALTC settings. (EB)

Applying Principles of Antibiotic Stewardship to UTIs in the PALTC Population

(1) PALTC settings should adapt existing resources as they codify antibiotic stewardship policies and procedures tailored to their organization and also incorporate antibiotic stewardship into their Quality Assurance and Performance Improvement (QAPI) program. (CS)

Supplementary References

